Bivalent domains enforce transcriptional memory of DNA methylated genes in cancer cells.

نویسندگان

  • Jairo Rodriguez
  • Mar Muñoz
  • Laura Vives
  • Costas G Frangou
  • Mark Groudine
  • Miguel A Peinado
چکیده

Silencing of multiple cancer-related genes is associated with de novo methylation of linked CpG islands. Additionally, bivalent histone modification profiles characterized by the juxtaposition of active and inactive histone marks have been observed in genes that become hypermethylated in cancer. It is unknown how these ambiguous epigenetic states are maintained and how they interrelate with adjacent genomic regions with different epigenetic landscapes. Here, we present the analysis of a set of neighboring genes, including many frequently silenced in colon cancer cells, in a chromosomal region at 5q35.2 spanning 1.25 Mb. Promoter DNA methylation occurs only at genes maintained at a low transcriptional state and is characterized by the presence of bivalent histone marks, namely trimethylation of lysines 4 and 27 in histone 3. Chemically induced hyperacetylation and DNA demethylation lead to up-regulation of silenced genes in this locus yet do not resolve bivalent domains into a domain-wide active chromatin conformation. In contrast, active genes in the region become down-regulated after drug treatment, accompanied by a partial loss of chromatin domain boundaries and spreading of the inactive histone mark trimethylated lysine 27 in histone 3. Our results demonstrate that bivalent domains mark the promoters of genes that will become DNA methylated in adult tumor cells to enforce transcriptional silence. These bivalent domains not only remain upon drug induced gene reactivation, but also spread over adjacent CpG islands. These results may have important implications in understanding and managing epigenetic therapies of cancer.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Changes of bivalent chromatin coincide with increased expression of developmental genes in cancer

Bivalent (poised or paused) chromatin comprises activating and repressing histone modifications at the same location. This combination of epigenetic marks at promoter or enhancer regions keeps genes expressed at low levels but poised for rapid activation. Typically, DNA at bivalent promoters is only lowly methylated in normal cells, but frequently shows elevated methylation levels in cancer sam...

متن کامل

Haploinsufficiency of Dnmt1 impairs leukemia stem cell function through derepression of bivalent chromatin domains.

Epigenetic mechanisms regulating leukemia stem cells (LSCs) are an attractive target for therapy of blood cancers. Here, we report that conditional knockout of the DNA methyltransferase Dnmt1 blocked development of leukemia, and haploinsufficiency of Dnmt1 was sufficient to delay progression of leukemogenesis and impair LSC self-renewal without altering normal hematopoiesis. Haploinsufficiency ...

متن کامل

O-5: Reprogramming of Paternal DNA Methylome during Spermiogenesis

Background Chromatin of male and female gametes undergoes a number of reprogramming events during the transition from germ cell to embryonic developmental programs in the zygote. This process involves reorganisation of the patterns of 5-methylcytosine (5mC), a DNA modification associated with regulation of gene activity. Notably, both maternal and paternal genomes undergo Tet3-dependent oxidati...

متن کامل

مروری بر متیلاسیون DNA و نقش آن در توموری شدن سلول های تیروئیدی

Epigenetic modification is one of the effective factors in tumorigenesis. Epigenetic processes, especially aberrant DNA methylation, play important role in thyroid cancer, and many tumor suppressor genes including PTEN, RASSF1A and TIMP3 are aberrantly methylated and silenced in thyroid cancer. Because of the specified pattern of DNA methylation in various tumor cells, it is suggested that thes...

متن کامل

اپی‌ژنتیک سرطان پستان: مقاله مروری

Stable molecular changes during cell division without any change in the sequence of DNA molecules is known as epigenetic. Molecular mechanisms involved in this process, including histone modifications, methylation of DNA, protein complex and RNA antisense. Cancer genome changes happen through a combination of DNA hypermethylation, long-term epigenetic silencing with heterozygosis loss and genom...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 105 50  شماره 

صفحات  -

تاریخ انتشار 2008